Timing of White Matter Development Determines Cognitive Abilities at School Entry but Not in Late Adolescence.
نویسندگان
چکیده
The primary aim of this study was to investigate to what degree the age-related white matter development, here called "brain age", is associated with working memory (WM) and numeric abilities in 6-year-old children. We measured white matter development using diffusion tensor imaging to calculate fractional anisotropy (FA). A "brain age" model was created using multivariate statistics, which described association between FA and age in a sample of 6- to 20-year-old children. This age model was then applied to predict "brain age" in a second sample of 6-year-old children. The predicted brain age correlated with WM performance and numerical ability (NA) (P < 0.01, P < 0.05) in the 6-year-old children. More than 50% of the stable variance in WM performance was explained. We found that in children older than 13 years of age, this association between brain age and WM was no longer significant (P > 0.5). The results bear theoretical implications as they suggest that the variability in individual developmental timing strongly affects WM and NA at school start but badly predicts adolescent cognitive functioning. Furthermore, it bears practical implications as one may differentiate maturation lags from persistent low cognitive abilities in school children, complementing cognitive tests.
منابع مشابه
Higher education is an age-independent predictor of white matter integrity and cognitive control in late adolescence.
Socioeconomic status is an important predictor of cognitive development and academic achievement. Late adolescence provides a unique opportunity to study how the attainment of socioeconomic status (in the form of years of education) relates to cognitive and neural development, during a time when age-related cognitive and neural development is ongoing. During late adolescence it is possible to d...
متن کاملDevelopment of a superior frontal-intraparietal network for visuo-spatial working memory.
Working memory capacity increases throughout childhood and adolescence, which is important for the development of a wide range of cognitive abilities, including complex reasoning. The spatial-span task, in which subjects retain information about the order and position of a number of objects, is a sensitive task to measure development of spatial working memory. This review considers results from...
متن کاملP 45: De- and Remyelination Affect Cognitive and Locomotor Abilities in Mice
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammatory and neurodegenerative processes. One of its pathophysiological hallmarks is demyelination, a consequence of oligodendroglial cell death leading supply shortfall and missing electrical insulation to axons. Demyelination induced consequences on neuronal network activity and subsequen...
متن کاملPerception and recognition of faces in adolescence
Most studies on the development of face cognition abilities have focussed on childhood, with early maturation accounts contending that face cognition abilities are mature by 3-5 years. Late maturation accounts, in contrast, propose that some aspects of face cognition are not mature until at least 10 years. Here, we measured face memory and face perception, two core face cognition abilities, in ...
متن کاملGraph theoretical analysis of developmental patterns of the white matter network
Understanding the development of human brain organization is critical for gaining insight into how the enhancement of cognitive processes is related to the fine-tuning of the brain network. However, the developmental trajectory of the large-scale white matter (WM) network is not fully understood. Here, using graph theory, we examine developmental changes in the organization of WM networks in 18...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 27 9 شماره
صفحات -
تاریخ انتشار 2017